
DATASET

Automatic Note-Level 
Score-to-Performance 
Alignments in the ASAP 
Dataset

SILVAN DAVID PETER 

CARLOS EDUARDO CANCINO-CHACÓN 

FRANCESCO FOSCARIN 

ANDREW PHILIP MCLEOD 

FLORIAN HENKEL

EMMANOUIL KARYSTINAIOS 

GERHARD WIDMER 

ABSTRACT
Several MIR applications require fine-grained note alignments between MIDI 
performances and their musical scores for training and evaluation. However, large 
and high-quality datasets with this kind of data are not available, and their manual 
creation is a very time-consuming task that can only be performed by field experts. 
In this paper, we evaluate state-of-the-art automatic note alignment models applied 
to dataset generation. We increase the accuracy and reliability of the produced 
alignments with models that flexibly leverage existing annotations such as beat or 
measure alignments. We thoroughly evaluate these segment-constrained models 
and use the best to create note alignments for the ASAP dataset, a large dataset of 
solo piano MIDI performances beat-aligned to MusicXML scores. The resulting note 
alignments are manually checked and publicly available at: https://github.com/CPJKU/
asap-dataset. The contributions of this paper are four-fold: (1) we extend the ASAP 
dataset with reliable note alignments, thus creating (n)ASAP, the largest available fully 
note-aligned dataset, comprising more than 7 M annotated notes and close to 100 
hours of music; (2) we design, evaluate, and publish segment-constrained models 
for note alignments that flexibly leverage existing annotations and significantly 
outperform automatic models; (3) we design, evaluate, and publish unconstrained 
automatic models for note alignment that produce results on par with the state of 
the art; (4) we introduce Parangonada, a web-interface for visualizing and correcting 
alignment annotations.
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1 INTRODUCTION

Large annotated datasets are fundamental in many 
fields for data-driven models to be trained and 
evaluated, and the field of music information retrieval 
(MIR) is no exception. In MIR, some annotations, such 
as those for emotion and genre labels, can be produced 
relatively quickly and do not require the intervention 
of expert annotators, thus allowing large datasets 
to be crowd-sourced efficiently at scale. In contrast, 
other annotations require tedious and time-consuming 
manual work by people with significant musical 
expertise. This is the case for note alignment between 
a human MIDI performance and a musical score, since 
a music expert would need to manually pass through all 
notes in a music performance and mark a corresponding 
one in the score. This task is further complicated by 
possible player mistakes (e.g., missing or wrong notes) 
and score symbols such as mordents or trills, where a 
single score marking generates multiple (and sometimes 
an unspecified number of) performance notes. Since a 
piece of music can consist of thousands of notes, this 
process quickly becomes infeasible as the number of 
pieces to align increases, even with a dedicated graphical 
interface. Indeed, existing datasets with note alignments 
are of limited size: 88 MIDI performances in Vienna4x22 
(Goebl, 1999) and 411 in CrestMuse-PEDB (Hashida et 
al., 2008). The MAPS dataset (Emiya et al., 2010) also 
contains note alignments, but does not contain real 
MIDI performances, only synthetic ones, simulated by 
randomly displacing the note positions to mimic the 
deviations introduced by the performers. Despite these 
difficulties, this type of alignment is fundamental for 
many MIR tasks such as performance-to-score music 
transcription (Nakamura et al., 2018), score following 
(Schwarz et al., 2004; Gu and Raphael, 2009; Arzt, 2016; 
Henkel et al., 2020), and expressive performance analysis 
(Cancino-Chacón et al., 2018; Lerch et al., 2020).

In this paper, we study several techniques to speed up 
the note-alignment process. They are then applied to the 
ASAP dataset (Foscarin et al., 2020), a large dataset of 
solo piano MIDI performances beat-aligned to MusicXML 
scores, to create (n)ASAP ( = (note-)Aligned Scores And 
Performances) the largest publicly available note-aligned 
dataset, consisting of 1062 unique performances with a 
total of 7,275,074 annotated notes.

There exists a considerable body of literature on 
automatic techniques that produce note alignments, 
given a corresponding MIDI performance and a score 
(or two MIDI performances). They are typically based 
on dynamic programming algorithms, for example 
Dynamic Time Warping (DTW) (Dannenberg, 1984), 
Longest Common Subsequence (LCS) and “divide and 
conquer” (Chen et al., 2014), and Viterbi decoding on a 
Hidden Markov Model (HMM) (Nakamura et al., 2017; Gu 
and Raphael, 2009). We perform an evaluation of the 

available models on three manually annotated reference 
datasets, and propose a model based on a hierarchical 
variation of DTW that performs on par with the state-of-
the-art model of Nakamura et al. (2017).

A closer look at the results of automatic techniques, 
however, reveals alignment mistakes that make them 
unsuited for the production of high-quality reliable 
annotations. In certain situations, typically when the 
performance greatly deviates from the musical score 
(e.g., major player mistakes), or when the interpretation 
of the musical score is not unique (e.g., trills and 
mordents), alignment errors are introduced, that often 
propagate through adjacent measures and create large 
sections of misalignments. Since it is not possible to 
know which pieces are incorrectly annotated, a tedious 
manual correction step would have to be performed 
on all data. While correction takes less time than a full 
manual note-level annotation, it would still require a 
considerable amount of time from music experts.

A solution that significantly improves the results of 
automatic alignments comes from other annotations 
that are already present in the ASAP dataset. It contains 
alignments at both the beat and the bar level. We employ 
such coarse annotations as anchor points to restrict the 
search space of the alignment algorithm. This effectively 
prevents cascading errors, as misalignments will not 
propagate beyond the next anchor point. We evaluate 
multiple algorithms on our three reference datasets to 
quantify the output quality that can be expected, and 
use the best performing algorithm to annotate the ASAP 
dataset. The produced note alignments are encoded in 
two formats: a tab-separated encoding chosen with a 
focus on ease of parsing and the match format (Foscarin 
et al., 2022) with a focus on inclusion of basic score 
information.

Together with the audio performances provided by the 
MAESTRO dataset (Hawthorne et al., 2019), our extended 
(n)ASAP dataset now includes performances as MIDI 
and audio files as well as scores as MusicXML files with 
uniquely identified notes, aligned at beat and note level, 
making it the largest and most complete resource for 
the myriad of MIR tasks that require fine-grained score 
information.

In addition to quantitative statistics on our reference 
datasets, we give qualitative measures of the accuracy of 
our alignment algorithm by investigating the results on 
all ASAP performances, and reporting on the alignment 
errors we encounter. For this manual inspection step, we 
develop a web-based note alignment visualization tool 
called Parangonada which we also make available.

Although the anchor point guided alignment algorithm 
was developed primarily to make use of ASAP’s existing 
annotations, it is still reusable in other contexts, since 
coarse-level temporal alignments are easier to produce, 
for example, by beat-tapping, and to manually correct. 
Moreover, our model was developed to deal flexibly with 
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anchor points of any granularity, e.g., beat, measure, 
section, etc.

Overall, this paper has four main contributions:

1.	 the extension of the ASAP dataset with segment-
constrained note alignments thus creating the 
largest fully note-aligned dataset (n)ASAP;

2.	 the design, evaluation, and publication of segment-
constrained models for note alignment that flexibly 
leverage existing annotations and significantly 
outperform unconstrained automatic models;

3.	 the design, evaluation, and publication of automatic 
models for note alignment that produce results on 
par with the state of the art;

4.	 the introduction of Parangonada, a web-interface for 
visualizing and correcting alignment annotations.

Links to our dataset, models, and tools are provided in 
Section 7. After Section 2 which provides an overview 
of related work, we detail the contributions. The above 
contributions are presented in order of importance, 
however they build upon each other in inverse order so 
this paper is structured accordingly: Section 3 introduces 
note alignments and evaluates two automatic 
hierarchical time warping-based models for automatic 
note alignment. Section 4 augments the above models 
with existing annotations as anchor points and evaluates 
these segment-constrained models in a variety of 
settings. Section 5 details the note alignment of the ASAP 
dataset, including a discussion on its robustness and a 
presentation of various statistics, and finally Section 6 
concludes the paper.

2 RELATED WORK

This section provides a brief overview of models for 
symbolic score-to-performance alignment for Western 

classical music. We do not address here in depth the 
related task of music alignment in the audio domain, 
and interested readers can find such a discussion 
elsewhere (e.g., Wang, 2017; Arzt, 2016; Müller, 2015, 
chapter 3). Figure 1 contains an intuitive representation 
of the difference between note alignments and 
sequence alignments. Audio-to-score and audio-
to-audio alignments match sequences of features. 
Note alignments match symbolically encoded notes. 
Although audio-to-audio alignment methods rely on 
similar sequence-to-sequence alignment techniques 
as some note-level midi-to-score alignment methods, 
there are fundamental differences between audio and 
symbolic representations. These differences lie mainly 
in the typical types of uncertainty and noise involved in 
the audio domain which are not present for symbolic 
representations, where entirely different problems can 
arise.

Furthermore, applicability of sequence-to-sequence 
alignment techniques to polyphonic symbolic note 
alignment is not straightforward; a central difficulty lies 
in finding a sequential representation for score chords 
that matches the played sequence of chord notes 
(Chen et al., 2014). Nevertheless, our work draws on 
two sequence-to-sequence alignment models for the 
preliminary alignment step of our models (see Section 
3.1). A conceptually similar approach to our proposed 
model was introduced by Prätzlich et al. (2016), where 
multi-scale DTW was used for audio-to-audio alignment. 
This work was subsequently implemented in the Sync 
Toolbox (Müller et al., 2021). Another influence of audio-
to-audio alignment techniques is the Needleman-
Wunsch time warping algorithm (Grachten et al., 2013) 
which combines the Needleman-Wunsch algorithm 
(Needleman and Wunsch, 1970) with DTW. Furthermore, 
anchor point-based or segment-constrained approaches 
have been applied to audio-to-score alignment (Müller 
et al., 2004). Similar measure-wise constraints have 

Figure 1 Differences between note alignments (left) and sequence alignments (right, e.g. produced by DTW). Note alignments can 
feature unaligned elements and the aligned note pairs are not guaranteed to be strictly ordered in time.
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been used in the generation of The Multimodal Schubert 
Winterreise Dataset (Weiß et al., 2021).

Models for symbolic music alignment date from 
the mid-1980s with pioneering work by Dannenberg 
(1984) and Vercoe (1984). They are commonly based 
on probabilistic sequential models like hidden Markov 
models (HMMs) or their derivatives (e.g., Schwarz et al., 
2004; Gu and Raphael, 2009; Nakamura et al., 2015, 
2017), or on dynamic programming algorithms such 
as dynamic time warping (DTW; e.g., Dannenberg, 
1984) or Least Common Subsequence (LCS; e.g., Chen 
et al., 2014). Gingras and McAdams (2011) showed 
that the inclusion of additional features such as voice 
and tempo information can improve the quality of the 
alignments. State-of-the-art polyphonic note alignment 
models often bypass a pure sequence-to-sequence 
alignment step altogether. One of the most widely used 
automatic score-performance alignment tools is the 
one introduced by Nakamura et al. (2017), based on 
hierarchical HMMs. We use this model as state-of-the-
art reference for evaluation. Nakamura et al.’s approach 
frames alignment as an alignment, error detection, and 
realignment process. First, they compute an alignment 
using a hierarchical HMM approach on chords and on 
chord notes. Second, difficult areas are identified using 
heuristics based on unaligned or erroneous notes in 
the first alignment. Lastly, an improved HMM-based 
realignment is computed on the difficult areas, this time 
split into two voices corresponding to left and right hand 
(assuming piano music).

In terms of datasets, there has been a recent effort 
to generate data through crowdsourcing (e.g., Weigl 
et al., 2019). A common way to collect alignments for 
audio performances is through reverse conducting (i.e., 
tapping) (Dixon and Goebl, 2002). This process marks 
some temporal positions in the audio files (usually 
corresponding to beats or downbeats) that can be 
mapped to score positions. See, for example, the work 
on the Mazurka project (Sapp, 2007), the CrestMusePEDB 
dataset (Hashida et al., 2017), and the Musical Themes 
Dataset (Zalkow et al., 2020).

In this paper, we focus on the ASAP dataset, which is 
not crowd-sourced but is the product of several iterative 
improvements and corresponding publications. The 
data was originally collected by the Yamaha Piano-e-
competition (https://www.piano-e-competition.com). 
In 2018, the MAESTRO dataset compiling this data was 
released (Hawthorne et al., 2019). Jeong et al. (2019) 
augmented the data with MusicXML scores and an 
automatic alignment using the model by Nakamura 
et al. (2017). Based on this data, the ASAP dataset 
was released in 2020 (Foscarin et al., 2020), including 
improved scores and robust, manually checked and 
corrected beat alignments.

For an overview of datasets for symbolic score-to-
performance alignment, we refer the reader to Cancino-

Chacón et al. (2018); Lerch et al. (2020). For a more in-
depth discussion on the complexity of preparing datasets 
of performances aligned to their scores, see Goebl et al. 
(2008).

3 AUTOMATIC NOTE ALIGNMENT

In this section, we discuss the use of automatic models 
to generate note alignments. Note alignments match 
individual notes in a performance to those on a score. 
Unlike alignments in audio files, which typically map 
each time point to at least one reference time point, 
note alignments match symbolic elements and can 
feature unaligned elements (see Figure 1). We encode 
note alignments as a list of note ID tuples. This note 
alignment definition is independent of encoding, i.e., 
MIDI files can be note aligned to other MIDI files just as 
sheet music scores can be note aligned to other scores. 
To facilitate the presentation in this work, we assume 
note alignment between (sheet music) scores and MIDI 
performances and refer to the corresponding notes as 
such. Each note can be matched (the tuple combines a 
score note and a performance note), deleted (a tuple 
of an omitted score note and an “deletion” keyword) 
or inserted (a tuple of an “insertion” keyword and an 
extra performance note). This setting does not handle 
embellishments with unspecified note number and 
pitch (e.g., mordents and trills) separately, but rather 
classifies their notes as insertions. Note that while 
matched notes with different pitches could in principle 
be accepted, none of our models produces such 
alignments nor does the ground truth contain such 
matches.

To automatically generate note alignments we 
develop a class of models for note alignment based 
on two hierarchical steps of sequence alignment 
followed by a combinatorial optimization step to align 
notes. This class builds upon several algorithms, most 
notably sequence alignment techniques, discussed in 
Section 3.1, and symbolic note matching, discussed in 
Section 3.2. In the following (Section 3.3), we derive a 
class of hierarchical note alignment models from these 
algorithms. Figure 2 presents an overview of the steps 
in our proposed models. We evaluate these models with 
two versions of dynamic time warping against the state-
of-the-art model by Nakamura et al. (2017) on three 
datasets of robust hand-corrected note alignments.

3.1 SEQUENCE ALIGNMENT ALGORITHMS
For sequence alignment we rely on two commonly used 
time warping algorithms. The algorithms are adapted 
to compute a sequence alignment between piano rolls 
(88×N binary matrices) of the score and performance. 
The output of each algorithm is a mapping between 
score and performance times.

https://www.piano-e-competition.com
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3.1.1 Dynamic Time Warping
We use (vanilla) DTW to compute a time mapping 
between a score and a performance. Our DTW takes 
piano roll representations of score and performance as 
inputs, and optimizes a monotonically increasing match 
between two vector-valued sequences (in this case, the 
piano roll slices) using a local distance metric. The result 
is returned as an optimal path that matches piano roll 
slices of the performance with corresponding slices of the 
score with minimal cumulative distance. The piano rolls 
are generated with a granularity of 16 samples per beat 
and per second, for score and performance, respectively. 
For a more detailed description of the DTW, see Müller 
(2015, chapter 3).

3.1.2 Needleman-Wunsch Time Warping
Similar to DTW, Needleman-Wunsch time warping 
(NWTW; Needleman and Wunsch, 1970) is a dynamic 
programming algorithm that we use to compute a 
time mapping between a score and its performance. 
Originally proposed as a way to deal with structural 
differences between music performances, this algorithm 
combines the Needleman-Wunsch (NW) algorithm and 
DTW. It allows the matching of multiple elements of one 
sequence to a single element in the other sequence (as 
in DTW), while still allowing the possibility of a “jump” 
(as in NW), which is controlled by a constant parameter 
referred to as the gap penalty (γ). As in the DTW described 
above, we use piano roll representations of the score and 
performance information as inputs for the NWTW. For a 
technical description of NWTW, we refer the reader to 
Grachten et al. (2013).

3.2 SYMBOLIC NOTE PROCESSING
Symbolic note processing derives note alignments from 
sequence alignments. We model note alignment as a 
combinatorial optimization problem. First, the score and 
performance notes are separated into sequences by 
pitch. Second, we compute an approximate performance 
onset time for all score notes of a given pitch using the 
time mapping given by the sequence alignment. This 
time mapping is shown in the bottom (blue line) of 
Figure 3 as well as in the top right (step 4) of Figure 2. 
The time mapping is derived from a fine-grained time 
warping (step 3) or linear interpolation between the 
window limits. Lastly, as the number of notes in either 
sequence is not guaranteed to be the same, we use a 
combinatorial optimization step to determine which 
notes are insertions or deletions. In the following, we 
denote the set of (projected) score note onsets as S and 
the set of performance note onsets P. This is computed 
separately for each segment and pitch; the window 
and pitch indices are omitted for readability. Assuming 
without loss of generality that the number of score notes 
is not greater than the number of performance notes 
(|P|≥|S|), the last step is formalized as follows:

	  | | -combinations of onsets I S P � (1)

	

| |

1

* argmin( || – ||)
S

i
k k

i I k

i S P
∈ =

= ∑
� (2)

where the minimum is taken over all i ϵ I the |S|-
combinations of performance onsets P, i.e., all subsets of 
P with cardinality |S| and distinct members. The number 

Figure 2 The steps involved in our proposed models: coarse sequence alignment, segmentation, fine-grained sequence alignment, 
note matching, and segment mending. For anchor point-based models treated in section 4, the first step is replaced by existing 
anchor points.
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of combinations is thus given by |P|C|S|or equivalently by 
the binomial coefficient of |P| over |S|. Sk and i

kP  refer to 
the onset position of the kth note in S and the kth note 
in the ith combination of notes from P, respectively, and 
i* refers to the combination that minimizes their pairwise 
distance.

The top of Figure 3 illustrates this optimization over all 
2-combinations of three performance notes. Note that 
this algorithm is unable to discern both insertions and 
deletions in the same window, as it aligns the maximal 
number of notes available. This implicitly favors matches 
over insertions and deletions. However, the algorithm 
is symmetric with respect to insertions and deletions, 
i.e., if |P|>|S| unaligned notes are insertions and if |P|<|S| 
unaligned notes are deletions. For long sequences 
with many insertions or deletions, the optimization 
loop over all possible combinations of indices becomes 
computationally expensive.

3.3 A HIERARCHICAL MODEL
We derive a class of hierarchical, automatic note 
alignment models from the aforementioned algorithms. 
The symbolic note matcher (3.2) is only suitable for short 
sequences due to its combinatorial bottleneck and its 
inability to detect both insertions and deletions of the 
same pitch in the same window. In order to circumvent 
these problems for a default case where the single 
window would cover the entirety of both score and 
performance, we divide the sequence alignment in two 
hieararchical steps. In a first step, a preliminary, coarse 
sequence matching is computed between the score and 
performance piano rolls. The score is cut into segments 
every four beats, and the cut times are mapped 

approximately to the performance using the computed 
sequence alignment. The segment length of four beats 
is a tuneable hyperparameter, and is not related to the 
musical material or its time signatures. The performance 
is then cut into segments at the corresponding 
times. These segments are then used as inputs to the 
algorithms discussed above: a fine-grained sequence 
alignment aligns the local piano roll segments and the 
symbolic note processor derives an optimal note match. 
See Figure 2 for an overview of our proposed model class. 
The technical details of segment cutting and mending, 
as well as resolution of alignment conflicts (Figure steps 
3, 5, and 5a) are presented in Section 4. This two-step 
sequence matching approach is conceptually similar to 
multi-scale DTW as presented by Prätzlich et al. (2016).

3.4 EXPERIMENTS AND DATASETS
To compare our automatic model against the state 
of the art, we evaluate three models on three large 
datasets. The models are the reference model by 
Nakamura et al., our proposed DTW-based hierarchical 
note alignment, and our proposed Needleman-Wunsch 
time warping based hierarchical note alignment. Note 
that in the second and third models, both coarse and 
fine-grained sequence alignment is computed by 
the same version of time warping, respectively. We 
refer to the models as Nakamura, hDTW+sym, and 
hNWTW+sym, respectively.

For the evaluation of the proposed models, we 
use three datasets of high-quality, manually note-
aligned piano performances, all of them recorded on 
computer-controlled Bösendorfer grand pianos. The 
Magaloff dataset (Flossmann et al., 2010) consists of 
(nearly) all solo piano works by Chopin, performed by 
Nikita Magaloff. This dataset consists of more than 150 
pieces, for a total of more than 300k performed notes 
(ca. ten hours of music). The Zeilinger dataset (Cancino-
Chacón et al., 2017) consists of nine full Beethoven piano 
sonatas performed by Clemens Zeilinger. This dataset 
contains 29 performances (each movement is counted 
as a separate piece), with more than 70k performed 
notes (ca. three hours of music). Finally, the Vienna 4×22 
dataset (Goebl, 1999) consists of four pieces/excerpts 
(two by Chopin, one by Mozart, one by Schubert) 
performed by 22 pianists. This dataset contains 88 
performances, with more than 40k performed notes (ca. 
two hours of music).

3.5 RESULTS
Throughout this section and in subsequent experimental 
results, we report the predictive quality of the models 
as F-measures, averaged across each dataset. The 
F-measure refers to the harmonic mean of precision 
and recall of the predicted performance-wise alignment. 
A predicted match is counted as a true positive only if 
the notes are matched in the ground truth alignment. 

Figure 3 Pitch-wise symbolic note matching based on 
minimal cumulative distance between warped notes. Three 
performance notes (top row) are matched to two score 
notes (bottom row). First the score notes are projected to the 
performance time domain using a time mapping (blue lines). 
Second the distances of the projected score onsets from all 3C2 
2-combinations of the three performance onsets are computed 
(rows two to four). Finally, the two performance notes 
minimizing the cumulative distance (red bars) are aligned to 
the score notes (yellow lines).
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A predicted insertion or deletion note is counted as true 
positive if the note is marked as an insertion or a deletion 
in the ground truth, respectively.

A false positive is a predicted note label that isn’t in 
the ground truth, a false negative is a ground truth note 
label that isn’t predicted. All notes have a predicted label 
as well as a ground truth label, so false negatives always 
correspond to false positives, and vice versa, albeit not 
necessarily the same number.

We illustrate this adapted F-measure with an example 
in Table 1: A misalignment of two notes that are 
unaligned in the ground truth creates one false positive 
match and two false negatives: a deletion and an 
insertion. True negatives do not exist in this setting. Note 
that this measure does not discriminate the types of 
errors: mismatches, false matches, and false insertions 
or deletions.

Results of the model comparison are collected in 
Table 2. For the Vienna 4x22 and the Magaloff datasets, 
we found a statistical difference (α = 0.01) between the 
average F-measures of these models. This result was 
computed using the Friedman test (Field et al., 2012), a 
non-parametric alternative to repeated measures ANOVA, 
since the values of the F-measures violate the normality 
assumptions ANOVA requires. To test the pairwise 
differences between NWTW/DTW and Nakamura, 
we used Wilcoxon signed-rank tests with Bonferroni 
correction (Field et al., 2012). The results of these tests 
suggest that the hierarchical DTW model performs on par 
with Nakamura for both Zeilinger and Magaloff datasets 
(the ones with the most complex pieces).

4 NOTE ALIGNMENT FROM ANCHOR 
POINTS

While the models presented in the previous section 
perform well, they still encounter the same difficulties 
that previous automatic models have. For some pieces 
and performances, the coarse sequence alignment fails 
and large chunks of the resulting alignments are faulty 
and unreliable.

4.1 ANCHOR POINTS
In this section, we incorporate existing coarse annotations 
as anchor points into our models to restrict the search 
space of the alignment algorithm. Specifically, we replace 
the first coarse sequence alignment step by existing 
beat, measure, or any other anchor point annotations 
(see step one in Figure 2). Using a segmentation derived 
from these anchor points, local symbolic note matching 
is performed, augmented by fine-grained time warping 
information.

We present three experiments for note alignments 
based on anchor points to assess the effects of each part 
in the models. We first introduce a formal description 
of the anchor point based segmentation and add two 
simple baseline algorithms.

4.1.1 Segmentation
Anchor point alignments are not only more coarse, 
but also structurally different from note alignments. 
Anchor points are not symbolically encoded, but refer 
to perceptual markers (usually obtained by manually 
tapping beats or measures) in the performance time. For 
a given anchor point (Ai = (si, pi))—consisting of a beat 
position (si) in the score and its corresponding time (pi) 
in the performance—any note sufficiently close to the 
score anchor might fall on either side of the performance 
anchor. To mitigate this, we use overlapping score and 
performance windows (Wi = (Si, Pi)). The fuzziness (f) 
hyperparameter refers to the length of this overlap in 
beats. The windows are defined as follows:

	 1{ onset( ) }s si i iS n s f n s f+= − ≤ ≤ +∣ � (3)

	 1{ onset( ) }p pi i i i iP n p c f n p c f+= − ≤ ≤ +∣ � (4)

	 1 1( ) / ( )i i i i ic p p s s+ += − − � (5)

where np and np refer to score and performance notes, 
respectively, and ci is the local tempo, i.e. the ratio of 
the performance interval divided by the score interval 
between two anchor points.

The window overlaps lead to multiple—sometimes 
conflicting—symbolic note matches produced by 
window-wise models (Figure 2 bottom right illustrates 
two overlapping window-wise models with conflicts). 
While non-conflicting matches are straightforward to 
merge into a longer alignment, dealing with conflicting 

VALUE EXAMPLE

Prediction m(sn1, pn1), m(sn2,pn2)

Ground truth: d(sn1), i(pn1), m(sn2,pn2)

True Positive: m(sn2, pn2)

False Positive: m(sn1,pn1)

False Negative: d(sn1), i(pn1)

Precision 1 / 2 ( = TP / (TP + FP))

Recall 1 / 3 ( = TP / (TP + FN))

Table 1 Computation of precision and recall for a simple case of 
four notes; score notes sn1, sn2, and performance notes pn1, 
pn2. m() denotes a match, d() and i() deletions and insertions, 
respectively.

4×22 ZEILINGER MAGALOFF

hDTW+sym 98.53 % 97.98 %* 94.57 %*

hNWTW+sym 97.38 % 95.07 %* 90.91 %

Nakamura 98.97 %* 97.61 %* 95.18 %*

Table 2 Dataset-wise averaged F-Scores of each model. 
* Superscripts are not statistically different from Nakamura’s 
(α = 0.01).
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matches is more complex. We therefore propose an 
alignment merging algorithm that traverses the graph 
of both (or all) conflicting note annotations whenever 
conflicts (both conflicting matches as well as matches 
conflicting with insertions or deletions) are encountered. 
In Figure 2 this connected note graph would return the 
central five notes that cannot be unanimously matched. 
One of the score notes is a deletion, but the window-wise 
models disagree about which it is. The collected cluster 
of notes is matched again using a single call to the 
symbolic note processor (3.2, step 5a in Figure 2) given 
a linear time interpolation of the surrounding alignment 
anchor points. This process guarantees uniqueness and 
monotonicity per pitch sequence.

4.1.2 Baseline Algorithms
We add two baseline algorithms: one for sequence 
alignment (see 3.1), and one for symbolic note matching 
(see 3.2). Linear time interpolation refers to a locally linear 
time mapping ˆ ˆip c s=  between score and performance, 
that is obtained by linear interpolation of the anchor 
points ( , )i i iA s p∀ = ∈  anchor points). This serves as a linear 
baseline for the more sophisticated DTW and NWTW 
matching functions. Analogous linear time extrapolation 
is used in the computation of the overlapping extension 
of performance windows (see Equation (5) above).

As a simple baseline for the combinatorial symbolic 
note processor, we use a greedy algorithm. Greedy 
note alignment searches for the closest unmatched 
performance note of matching pitch for every score 
note and, if one is found, aligns them (Figure 2 top right, 
step four illustrates this behavior). Dark blue lines match 
notes using minimization over cumulative distance (after 
mapping to the same time line) where the light blue 
lines are added greedily, i.e., the first six performance 
notes are aligned to the first six score notes. The 
search is executed window-wise, where the number of 
performance windows before and after the main window 
is determined by a hyperparameter. Leftover score 
and performance notes are deletions and insertions, 
respectively. Greedy alignment is independent of local 
time warping and only works for suitably small windows; 
however, it is an important baseline for the beat anchor 
points.

4.1.3 Anchor Point Experiments
Overall, we define four model classes from the 
introduced algortihms: A Greedy model that uses greedy 
note matching in windows produced from anchor points 
without any call to sequence alignment, a Linear model 
that refers to linear time interpolation between anchor 
points to augment the combinatorial note processor, 
and DTW and NWTW models that use DTW and NWTW 
for time interpolation, respectively. In our experiments, 
we refer to the four main time warping and matching 
models as Greedy, Linear, DTW, and NWTW. All models 

with the exception of Greedy use linear interpolation 
for conflicting note alignments at overlaps. In order to 
compare our models, we design three experiments:

1.	 A tuning experiment (4.2) to find the best 
hyperparameters for each model class for note 
alignment based on anchor points.

2.	 A performance evaluation (4.3) on the four tuned 
models on the full datasets.

3.	 A robustness experiment (4.4) that tests the four 
tuned models against increasingly unreliable anchor 
point conditions.

All experiments are computed on the aforementioned 
datasets with known high-quality note alignment ground 
truth (see Section 3.4), from which we derive synthetic 
anchor points.

4.2 TUNING EXPERIMENTS
This experiment consists of a hyperparameter grid 
search. The grid search is computed for the values in 
Table 3 under the beat-wise anchor points condition. To 
tune the hyperparameters of the models, we selected six 
pieces from the Magaloff and Zeilinger datasets, which 
present interesting difficulties for alignment systems 
(e.g., ornaments/trills, cross rhythms). The pieces are 
Nocturnes Op. 9 Nos. 1 and 2, Etude Op. 10 No. 11, 
Nocturne Op. 15 No. 2, the Barcarole Op. 60 by Chopin, 
and the third movement of the Sonata Op. 53 (Waldstein) 
by Beethoven. These pieces were only used for tuning the 
models and not included in the other two experiments 
on performance (4.3) and robustness (4.4).

The metrics tested are defined as follows:
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METHOD PARAMETERS VALUES

Greedy Window size: 1, 3, 5

Linear Fuzziness: 0.05n; n ∈ {1,...,20}

DTW Fuzziness: 0.05n; n ∈ {1,...,20}

Metric: cos, Lp; p ∈ {1,2,4, ∞}

NWTW Fuzziness: 0.05n; n ∈ {1,...,20}

Metric: cos, Lp; p ∈ {1,2,4, ∞}

γ: 0.5, 1.0, 1.5 2.0, 2.5, 3.0

Table 3 Hyperparameter grid search values: window size 
refers to the search space of notes for the greedy algorithm, 
fuzziness refers to the amount of window overlap (see Section 
4.1.1), metric refers to the local distance metric in the time 
warping algorithms, and γ refers to the gap penalty.
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The hyperparameters that resulted in the highest 
average F-measures for beat-wise anchor points are 
collected in Table 4. Note that for all conditions relying on 
time mappings, the optimal fuzziness is relatively high. 
However, shorter window overlaps sometimes result in 
similarly high F-measures, e.g., for the linear condition, 
an average F-measure of 98.60% was computed for 
fuzziness of 0.3. Fuzziness can be understood as a trade-
off between matching more notes per window, but 
having more conflicting matches in post-processing. 
The different local metrics did not produce significantly 
different results for the DTW and NWTW conditions except 
for the L∞ norm. A similar grid search was performed 
for DTW and NWTW on the no anchor point condition, 
resulting in fuzziness and metric parameters of 4.0 and 
cosine distance. The larger fuzziness parameters can 
be attributed to the increased uncertainty of the DTW/
NWTW-based anchor points.

4.3 PERFORMANCE EXPERIMENTS
This experiment evaluates the four tuned models on 
the full datasets. Two different synthetic anchor point 
conditions are computed: beat-wise and measure-wise.

Results of the model comparison on the different 
anchor point granularities are collected in Table 5. As a 
baseline, we again refer to the current state-of-the-art 
model proposed by Nakamura et al. (2017). To evaluate 
our proposed algorithms, we proceed in a similar way 
to the automatic model evaluation (Section 3.5) and 
compare these models to Nakamura’s with a Friedman 
test for each dataset and granularity (beat-wise/
measure-wise). We find a statistical difference for all 
dataset and granularity combinations. We conducted 
Wilcoxon signed-rank tests with Bonferroni correction 
to test pairwise differences between each of the models 
(Greedy/Linear/DTW/NWTW) and Nakamura’s. As can be 
seen in Table 5, the results of these tests show improved 
results for almost all models that include anchor points 
and time mappings (values with * superscripts).

An unexpected result is the performance of the 
linear time interpolation in the beat-wise condition. 
We conjecture that due to the limited room for tempo 
variation within a single beat, the linear interpolation fits 
the true alignment well. NWTW and DTW on the other 
hand align windows of a beat extended by a considerable 
amount of overlap, which adds variability and uncertainty 

to these time mappings. For longer windows, time 
warping models profit from their advantage in flexibility 
over simple linear interpolation.

While the median F-measures are consistently high, 
even in the automatic setting, there are fewer and less 
extreme outliers for models that leverage anchor point 
information. Figure 4 illustrates this result per model as 
the F-measure distribution on the Magaloff dataset. One 
important practical question is whether it would be possible 
to identify these potentially difficult-to-align pieces 
beforehand and produce anchor points for only those 
pieces. We compute the Jaccard index (Levandowsky and 
Winter, 1971) to quantify the overlap between difficult-to-
align pieces (with F-measure < 80%) for each pair of the 
automatic models. We find an average overlap of 16 %, 
with only one piece in common between all models. Since 
different automatic models fail on different pieces, the 
prediction of difficult-to-align pieces is clearly not trivial.

METHOD HYPERPARAMETERS F-MEASURE

Greedy Window size: 3 95.43 %

Linear Fuzziness: 0.95 98.71 %

DTW Fuzziness: 0.65, L4-norm 98.74 %

NWTW Fuzziness: 0.8, γ: 0.5, 
Cosine 

98.75 %

Table 4 Hyperparameters and F-measures of the best 
performing models on the tuning set.

4×22 ZEILINGER MAGALOFF

METHOD F-MEASURE (IN %)

NAKAMURA 98.97 97.61 95.18

Beats Greedy 99.28 98.09 95.68

Linear 99.87* 99.67* 98.87*

DTW 99.81* 99.48* 98.67*

NWTW 99.91* 99.61* 98.78*

Measures Greedy 97.59† 96.01 90.33†

Linear 99.28 99.30* 97.82*

DTW 99.31* 98.88 97.66*

NWTW 99.63* 99.25* 97.88*

Table 5 Values with superscripts are statistically better (*) or 
worse (†) than Nakamura’s automatic alignment (α = 0.01), 
respectively. Bold indicates the best result (or results where 
the difference is not significant) for each resolution (beats, 
measures) and dataset.

Figure 4 F-measure for models with global and beat level 
alignments. Results are reported on the Magaloff dataset.
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4.4 ROBUSTNESS EXPERIMENTS
This experiment evaluates the robustness of the tuned 
models under increasingly unreliable anchor point 
conditions. Human annotations, especially when created 
by tapping along to a performance without cleaning 
the annotations, are subject to motor noise and other 
impressions. The introduced temporal deviations might 
throw the models off track. A robust model allows for 
large deviations without performance losses.

This is an important feature that allows human 
anchor point annotations to be created with minimal 
effort. We simulate errors and imprecision in tapping by 
adding noise to the performance anchors of the anchor 
points. Its effect on predictive quality is investigated for 
uniformly distributed noise between 0 and ±300 ms in 
increments of 25 ms.

The results of the robustness experiment are 
visualized in Figure 5. All models perform consistently for 
noise levels below ±100 ms, and degrade almost linearly 
for higher noise levels. At higher noise levels, the time 
mapping augmented models in general—and NWTW in 
particular—are shown to be more robust.

For context, professional musicians can synchronize 
their playing with less than 20 ms errors (Goebl and Palmer, 
2009). More closely related to our tapped anchor points, 
Gadermaier and Widmer (2019) estimate the distribution 
of beat-wise annotations of symphonic music, and find 
performance-wise median beat annotation standard 
deviations between 27 and 68 ms Our models are robust 
within these ranges of tapping noise.1

5 ALIGNMENT OF THE ASAP DATASET

As our main contribution, we produce reliable note 
alignments for the ASAP Dataset. ASAP is a large 
downbeat and beat aligned collection of symbolic 

scores (MusicXML files) and performances (MIDI files). 
As described in Section 2, this dataset was collected 
and refined in several iterations. It contains more than 
1000 performances of over 200 pieces of common 
practice period solo piano music (see Table 6 for detailed 
numbers of dataset composition). The performances in 
the dataset are recorded on computer-controlled grand 
pianos during a piano performance competition. The 
performers of the Piano-E-Competition are adolescents 
or young adults playing highest-level piano competition 
repertoire.

5.1 ALIGNMENT ENCODING AND REPETITIONS
One of the noteworthy differences that the change 
from beat-level (or sequential) alignments to note 
alignments engenders is the encoding of repetitions. 
In the original ASAP dataset, beats and downbeats are 
annotated for score and performance MIDI files. In the 
accompanying MusicXML score, the musical material 
of the score MIDI file is sometimes represented with a 
number of score navigation markers: repetitions, Codas, 
Segnos, Fines, etc. ASAP solves the possible mismatch 
between the implicitly notated musical material in the 
MusicXML and the played material in the MIDI scores 
by adding a “downbeats to score” mapping for each 
MIDI file. This mapping links each downbeat in a MIDI 
file with a measure in the MusicXML score. Whenever a 
score section is repeated, the downbeat counter jumps 

Figure 5 Effect of artificially added uniform noise on tapping 
annotations. Results are computed on the Magaloff dataset for 
beat-level alignments. The shaded areas indicate ±1 standard 
deviation from the mean.

COMPOSER S P S-NOTES P-NOTES MINS

Bach 59 169 117218 321688 387

Balakirev 1 10 16490 139608 87

Beethoven 63 271 431704 1668873 1761

Brahms 1 1 3514 1667 6

Chopin 36 289 236186 1410369 1257

Debussy 2 3 10800 14470 13

Glinka 1 2 4246 9074 10

Haydn 12 44 56230 190942 215

Liszt 17 121 181274 1192297 900

Mozart 6 16 33796 73927 78

Prokofiev 1 8 9438 38231 33

Rachmaninoff 4 8 13552 20941 30

Ravel 4 22 32248 108519 140

Schubert 15 62 134576 453464 499

Schumann 11 28 63593 122356 129

Scriabin 2 13 18342 145441 125

All 235 1067 1363207 5911867 5670

Table 6 ASAP dataset statistics: S is the number of scores, P is 
the number of performances, S-Notes and P-Notes are number 
of notes in scores and performances, respectively, and Mins is 
the total duration of performances in minutes.
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back to the start of the section, i.e., multiple downbeats 
can refer to the same measure in the score, one for 
each time it is played. For note alignments we chose 
a different approach to avoid the situation of having 
multiple performed notes aligned to the same score 
note. As a preprocessing step, we unfold the MusicXML 
scores to the played length by copying repeated 
sections and updating the IDs of the notes contained 
therein.

Given such an unfolded, longer score, we align the 
performance beats and downbeats to score positions 
using aforementioned downbeats to measure mapping. 
Once this alignment is computed, it serves as anchor 
points for the segment-constrained note alignment.

5.2 TECHNICAL ALIGNMENT DETAILS
Note alignment was carried out using the best 
performing algorithm evaluated above on non-noisy 
input with beat alignments: linear interpolation with 0.95 
window fuzziness. Notably, no dynamic time warping of 
any kind was used for the final note alignment. For each 
performance, we store two alignment files. One easy-to-
parse tsv file that maps the notes in the MusicXML (by ID) 
to the notes in the MIDI performance (by track, channel, 
time, and pitch), including insertion and deletion for 
insertions and deletions, respectively. Secondly, we 
provide an alignment file for each performance in 
the more complete match file format (Foscarin et al., 
2022). To make these alignments easy-to-use for future 
research, we add an ID field to each note in the MusicXML 
scores. This field does not impact users’ ability to parse 
them with any tool we tested (music21, MuseScore, and 
Finale). Note that the IDs in match and tsv alignments 
are derived from the IDs in the MusicXML score file, but 
suffixed by an integer corresponding to the repeat. E.g. 

n112-1 in an alignment file refers to the MusicXML note 
n112 played for the first time. If this note is repeated 
(i.e.it is in a section of the score that is repeated) its 
second occurrence is marked as n112-2. Functionality to 
process MusicXML, MIDI, and alignment files is publicly 
available in the Partitura Python library (Cancino-Chacón 
et al., 2022).

5.3 MANUAL CHECKS AND PARANGONADA
The above model comparison indicates that the best 
performing segment-constrained algorithm produces 
reliable note alignments in more than 97% of cases. 
However, there is still a risk of errors stemming from 
ornaments (in particular trills and mordents), players’ 
mistakes, cadenzas, segments with unclear beats 
(annotated as “rubato beats” in the ASAP dataset), or 
score parsing difficulties. To better investigate our results, 
we inspected all note alignments visually.

Our robustness checks are carried out by ourselves, 
based on visual representations of the note alignments. 
We spend on average three minutes on each alignment 
and note whether visually perceivable errors are present, 
and we classify all alignments without perceivable errors 
as robust. No alignment mistakes are corrected during 
this process. We add the result of this inspection to the 
annotations json file included in the dataset repository.

We assess 832 performance alignments as robust. 
Note that we perform the visual robustness check in a 
very conservative way: we classified a piece as non-
robust if there were perceivably misaligned notes. This is 
much stricter than a classification based on thresholding 
at even a high value of F-measure, as most of the non-
robust pieces are still correctly aligned to a very high 
degree. We recommend using only the robust alignments 
for critical tasks like model evaluation.

Figure 6 Parangonada visualization of an aligned excerpt of Chopin’s Nocturne Op. 32 No. 2, measures 8–9. The top piano roll 
represents the performance; the bottom piano roll the score. Lines connect notes aligned by automatic note alignment models. The 
score is added for clarity and is not part of the interface. Parangonada is not aware of pitch spelling; all black notes are displayed as ♯ 
even though the piece is in A♭ major.
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In our inspection process, we made use of a tool 
whose interface is shown in Figure 6. This is a web-
based tool for alignment visualization, comparison, and 
correction named “Parangonada” (from the Spanish verb 
parangonar, to compare). Parangonada was developed 
for the processing and checking of the note alignments 
produced for the ASAP dataset, however it has already 
been used with several other datasets. With this publicly 
available tool (see Section 7), users can upload an 
alignment encoded in a CSV file (which can be produced 
using the code published with this paper or taken from 
the provided Parangonada-ready data included in the (n)
ASAP dataset repository), and edit/correct it. The tool has 
MIDI playback capabilities, and users can annotate beats 
by typing on the keyboard in real time.

Figure 6 shows a note-aligned excerpt from 
Chopin’s Nocturne Op. 32 No. 2. The top piano roll 
is the performance, and the bottom the score. Note 
alignments are represented by lines connecting notes 
of the performance with corresponding notes in the 
score. The excerpt is taken from measures 8–9, and 
the corresponding section of the score is added at 
the bottom right (taken from https://imslp.org). This 
excerpt showcases a number of common difficulties 
encountered during note alignment creation, namely 
three different types of ornaments—two appoggiature, 
an acciaccatura, and a trill—and a five-over-three cross-
rhythm.

Parangonada is able to represent two alignments at 
the same time, e.g., for comparison of a predicted note 
alignment with a ground truth. By way of example, 
Figure 6 compares alignments produced by Nakamura’s 
and our DTW-based model. Blue lines represent notes 

matched by our DTW-based algorithm. These alignments 
recover the ground truth. Yellow notes are trills which 
are not individually marked in the score and correctly 
identified as insertions. A second alignment created by 
Nakamura’s algorithm is loaded into Parangonada. The 
interface allows the user to toggle between the two 
alignments, note alignments produced by Nakamura’s 
algorithm are not shown as lines. The alignment is 
however implicit in the color coding of notes. Orange 
notes indicate notes whose matching differs between the 
two displayed alignments. These notes are not matched 
by Nakamura’s algorithm but correctly matched by our 
DTW-based model.

5.4 ANALYSIS OF EXPRESSIVE FEATURES
Note alignment data is required for many tasks such 
as performance-to-score music transcription, score 
following, and expressive performance analysis. However, 
these are not the most well-known MIR tasks and it 
might not be clear what the benefit of note alignments 
is. In this section, we provide some exemplary analyses 
that cannot be done without reliable note alignments.

Note-aligned data can be used to compute detailed 
descriptions of expressive characteristics of individual 
notes or chords. Figure 7 shows histograms of tempo and 
articulation features for four composers. Local tempo 
as presented here is computed at each individual score 
onset. When multiple notes are played at the same onset, 
an average onset time is used for tempo computation. 
This results in a single tempo curve for each performance 
that is much more fine-grained than beat-wise tempo 
values. The second expressive feature presented is 
computed as the base two logarithm of the ratio of 

Figure 7 A histogram of the number of notes performed by composer and the performance statistics of those notes. Pieces from four 
composers were gathered: Chopin, Bach, Beethoven and Liszt. The left histogram plot shows onset-wise tempo in seconds per beat. 
The right plot shows a histogram of articulation expressed as a note-wise dimensionless logarithm of played duration divided by 
notated duration.

https://imslp.org
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played duration (not taking pedalling into account) over 
notated duration. Interestingly, there seem to be clear 
non-zero modes of articulation indicating the presence 
of natural but composer-specific levels of “staccatoness” 
and “legatoness”.

Figure 8 shows the distribution of chord spreads for 
the same four composers. Chord spread is based on 
the previous definition of a single tempo per unique 
score onset. If multiple notes of the same score onset 
(such as a chord) are played, the performed notes 
do not coincide perfectly. Notes with the same score 
onset may include notes from different staves and 

arpeggios. In this situation, we define chord spread 
as the absolute difference between the first and last 
performed onset of the notes in a chord. A small amount 
of chord spread is unavoidable due to motor noise, but 
it is also an important element of musical expression, 
e.g., performers tend to emphasize a melody in a chord, 
with effects on dynamics and melody lead (Goebl, 2001). 
Our distributional analysis reveals that chord spread 
shows a marked increase over time (Bach 1685–1750, 
Beethoven 1770–1827, Chopin 1810–1849, Liszt 1811–
1886). We hypothesize that present day performers use 
this expressive device to communicate styles of common 
practice period solo piano music: from fairly restrained 
and precise Baroque playing to expressly free-flowing 
Romantic playing.

Figure 9 shows a similar analysis but much more 
specific. It is based on four performances of a six measure 
excerpt from Scriabin’s Sonata No.5, Op. 53. Violin plots 
represent distributions of note dynamics, local timing, 
and articulation for each performer (the latter two of 
which are impossible without a note alignment). Local 
timing is related to the previous definition of chord 
spread and refers to deviation (positive or negative) from 
the average performed onset of all score-coincident 
notes. While performer-wise distributions of expressive 
features of a whole piece are largely piece dependent, 
such local analyses can give rise to striking differences. 
In particular, the first and last performer play much 
more legato than the others, while the first performer 
also plays with markedly higher dynamics and looser 
timing.

Figure 8 Chord spread distribution in seconds for four 
composers. Chord spread is defined for each chord as the 
maximal time interval between performance note onsets 
belonging to the chord. The white dot shows the median, the 
thick horizontal line the quartiles, and the thin horizontal line 
the 5- and 95-percentiles.

Figure 9 Performance statistics for four performers on the Scriabin Sonata No. 5, measures 47-52. Left: dynamics (MIDI velocity, 
normalized to (0,1)); middle: timing (how much onsets of chord notes deviate from their mean, in seconds); right: articulation (how 
staccato or legato the notes are played; see also Figure 7). The horizontal gray lines indicate quantiles; see also Figure 8.
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6 CONCLUSIONS

In this paper, we presented four contributions: (1) a 
carefully note-aligned dataset (n)ASAP, produced from 
(2) a flexible segment-constrained alignment model, 
which is derived from (3) an automatic hierarchical note 
alignment model, and manually checked using (4) a 
web-based alignment correction tool.

We create new, high-quality, note alignments between 
the MIDI performances and the corresponding scores of 
the ASAP dataset. Along with this paper we publish the 
generated note alignments, which results in (n)ASAP, the 
only reliable and openly accessible resource of its size for 
MIR tasks that require fine-grained score information.

We present a simple and computationally inexpensive 
automatic note alignment model based on a hierarchical 
time warping step and a combinatorial symbolic note 
processor. This model performs on par with the current 
state-of-the-art models.

We adapt our model to leverage anchor points (which 
can be produced relatively easily, e.g., by tapping). We 
show that this change consistently and significantly 
improves the alignment performance, in particular for 
complex pieces that contain musical embellishments 
and performance errors. We also study how the results 
are affected by tapping noise and show that our models 
are robust with respect to deviations that fall in the 
typical human beat annotation range.

Besides our reusable models, we publish a graphical 
tool that facilitates the visualization of note alignment 
errors and their correction.

Many problems of fully automatic and segment-
constrained alignment remain open. Future work 
includes how to handle the performed ornaments 
instead of simply classifying them as insertions 
(following previous work, e.g., Gingras and McAdams, 
2011) and how to automatically detect the pieces which 
require anchor points, e.g., by taking cues from error 
identification in the related beat tracking task (Grosche 
et al., 2010). Furthermore, automatic error identification 
and correction of note alignments is an open problem.

7 REPRODUCIBILITY

We publish our data, models, and tools:
(n)ASAP Dataset: https://github.com/CPJKU/asap-dataset
Alignment models: https://github.com/sildater/parangonar
Parangonada Alignment Tool: https://sildater.github.io/
parangonada/.

NOTE
1	 	Note that while symphonic music is not directly comparable to 

the musical material tested in our experiment, beat locations are 
plausibly harder to identify in symphonic music, which at worst 
leads to greater annotation variability in the literature than what 
we would expect for our data.
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