
THE MATCH FILE FORMAT:
ENCODING ALIGNMENTS
BETWEEN SCORES AND

PERFORMANCES

Francesco Foscarin*
Johannes Kepler University
francesco.foscarin@jku.at

Carlos Cancino-Chacón*
Johannes Kepler University
carlos_eduardo.
cancino_chacon@jku.at

Emmanouil Karystinaios*
Johannes Kepler University
emmanouil.karystinaios@jku.at

Maarten Grachten
Independent Researcher
maarten.grachten@gmail.com

Silvan David Peter*
Johannes Kepler University
silvan.peter@jku.at

Gerhard Widmer
Johannes Kepler University
gerhard.widmer@jku.at

Abstract

This paper presents the specifications of match: a file format that extends a MIDI human
performance with note-, beat-, and downbeat-level alignments to a corresponding musi-
cal score. This enables advanced analyses of the performance that are relevant for vari-
ous tasks, such as expressive performance modeling, score following, music transcription,
and performer classification. The match file includes a set of score-related descriptors that
makes it usable also as a bare-bones score representation. For applications that require
the use of structural score elements (e.g., voices, parts, beams, slurs), the match file can be
easily combined with the symbolic score. To support the practical application of our work,
we release a corrected and upgraded version of the Vienna4x22 dataset of scores and per-
formances aligned with match files.

*equal contribution.

1

Introduction

In this work, we presentmatch: a file format for a complete and robust encoding of symbolic
music alignments. The term symbolic refers to the class of musical data types that explic-
itly represent a set of elements from common music notation. Such a set must include at
least note elements with their temporal position and (where applicable1) pitch and duration.
Common data types that are symbolically encoded are musical scores (in MEI, MusicXML,
Humdrum **kern, and MIDI2 formats) and performances (in MIDI format). This is opposed
to other data types, such as audio and raster score images, which only represent low-level
information, such as amplitude over time, and pixel RGB values, respectively. Several works
in music information retrieval (MIR) make use of symbolic data types as we can expect a
more explicit representation of music to produce more efficient andmusically interpretable
systems.

A symbolically encoded performance, in short, symbolic performance, consists of a sequential
representation of notes with a position and duration given in terms of real physical time. It
is produced by recording a human performance withmusical instruments fitted with proper
sensors, such as MIDI keyboards, MIDI drums, Disklavier grand piano, and, to some ex-
tent, guitars with MIDI pickups. Those instruments can capture and explicitly represent the
time and dynamic deviations that are natural aspects of an expressive performance (Hon-
ing, 2001). On the other side, a symbolic musical score expresses note positions in musical
units such as fractions of quarter notes and beats and arranges them in temporal and orga-
nizational structures such as measures, beats, sub-beats, parts, and voices. It also explicitly
represents dynamics and temporal directives and other high-level musical features such as
time signature, pitch spelling, and key signatures.

The structured representation of the score and the expressive nuances encoded in the per-
formance are complementary elements that can be combined to enable advanced musical
analysis. Typical MIR tasks that benefit from it are expressive performance modeling, score
following, music transcription, and performer classification. However, to fully leverage this
information, we need an alignment between each corresponding element in a score and
a performance (see Figure 1 for a short example). Some fully automated techniques have
been proposed to produce alignments at note-level (Chen, Jang, & Liou, 2014; Gingras &
McAdams, 2011; Nakamura, Yoshii, & Katayose, 2017), but, as they struggle in certain situa-
tions, it is still common to go through a manual annotation/correction phase performed by
experts (Foscarin, McLeod, Rigaux, Jacquemard, & Sakai, 2020).

In this paper, we assume a score-performance alignment is given, for example as a result of
a manual or semi-automatic alignment, and we address the problem of encoding it in a for-
mat that focuses on completeness, usability, and robustness. We name this format match.
Completeness is ensured by explicit handling of repetitions structures and by including in
the match file the entire list of notes in the performance, even if they are not present in the
score, for example as a result of embellishments, playermistakes, or incomplete scores. For
usability, we reduce the technical difficulties of operating across multiple files, by encoding
in the match file a lossless representation of the performance, enhanced with a bare-bones
representation of the score. This enables the usage of match files as a stand-alone repre-
sentation for all tasks that focus on pitch and duration information. Furthermore, the extra

1Percussive notes may not have a pitch or duration.
2Though MIDI can only encode a partial set of the score information.

2

MEI Encoding Conference, 2022

Figure 1: An example note-level alignment between a score and a performance of a score
with a real piano performance. From Bach Fugue 13 in F sharp major, BWV 858. Aligned
notes are connected blue dotted lines, while notes that are only in the score (deletion) or in
the performance (insertion) are circled in green. Beat positions aremarkedwith grey vertical
lines in the performance.

score information acts as a redundancy safety layer to improve the robustness of the align-
ments for applications that need to link to the symbolic score to use other score elements
(e.g., voices, parts, beams, slurs). On the contrary, a more naive encoding that only points
at score positions with beats and measures number would fail in case of minor score modi-
fications such as the splitting or time modification of a measure.

The Match format is text-based, sequentially structured, and human understandable. This
enables the visual inspection and manual editing of its content, and eases its integration in
different applications. For Python-based research, the usage of match files is further simpli-
fied by the Partitura package (Grachten, Cancino-Chacón, & Gadermaier, 2019) that offers
off-the-shelf parsing and processing of this format. To support the practical application of
our work, we release a corrected and upgraded version of the Vienna 4x22 dataset of sym-
bolic performances and aligned scores (Goebl, 1999).

The remainder of this paper is organized as follows: in Section 1 we compare with other
relevant research and highlight how our system can solve typical problems in this field. In
Section 2we detail thematch file format and Section 3we present the dataset andmatch file
parsing with Partitura. Finally, in Section 3.2 we draw some conclusions and discuss future
work.

1 Related work

Some datasets exist that contain alignments between scores and performances. For ex-
ample, the expressive performance dataset (Marchini, Ramirez, Papiotis, & Maestre, 2014)

3

contains note-level alignments (onset, offset and pitch), the Mazurka dataset (Cook, 2007)
provides beat-level alignments and the ASAP dataset (Foscarin et al., 2020) contains align-
ments at the measure level. To store them, these datasets use text files (one file for each
monophonic part), Excel spreadsheets, and JSON files, respectively. None of those formats
is directly extensible to include a complete set of alignments. The absence of a unique en-
coding forces researchers to spend time learning new formats and writing new code every
time they need to target a different dataset.

A proposal for a general and easy-to-use encoding of note alignments is made by Devaney
and Gauvin (2019), by extending the musical score (in MEI or Humdrum **kern format) with
some performance-related information. A problem that arises from this approach is about
encoding efficiency: if we are considering multiple performances of the same score, we
would need to make multiple duplicates of the entire musical score. This creates a lot of
repeated information, increases memory usage, and produces consistency problems if we
want, for example, to correct a notation error in the score. Another problem is that this
format can’t encode information on performed notes that are not on the score, e.g., embel-
lishments or player mistakes. Similarly to this approach, our match file contains enough
information on the score and performance to be used as a stand-alone representation for
many tasks. However, instead of extending the score, we work in the opposite direction by
extending the performance with a bare-bones score representation.

Nakamura et al. (2017) present a system that is able to automatically align two MIDI perfor-
mances or a MusicXML score and a performance. The output of such a system is a list of
references, similar to the main part of our match file. Differently from our approach, how-
ever, Nakamura uses real numbers with (6 decimal digits precision) to identify the onset
and offset of notes in the MIDI file. This limited precision can lead to rounding problems
and force the usage of approximate equality functions to retrieve the corresponding note in
the MIDI. Instead, our approach ensures a lossless encoding of performance time positions
with MIDI ticks that are already used in the MIDI file.

Older versions of the match file have been around for some time3 but no official reference
or documentation is available. The initial format was created to encode manually anno-
tated note alignments between pieces performed on computer-monitored pianos such as
Boesendorfer SE 290 and their corresponding scores. It was developed in prolog, a popular
language at the time for database creation and retrieval of information. For this reason, each
event or entry in the match file format is represented on a new line with a dot determining
the end of a prolog-like compound term. In this paper, we propose an updated version of
thematch file (version 1.0.0) that includes support for repetitions and time point alignments
(e.g., beats and downbeats) and solves other small issues that were found in practical usage.
This paper has among its goals to be a formal reference to this encoding format for a more
widespread utilization in the research community.

2 Match files

Match is a text-based file format developed to encode a complete and robust alignment
between a symbolic performance and a corresponding musical score. We start the descrip-
tion of the format with a high-level perspective on how it handles alignments and repetition

3http://dx.doi.org/10.21939/4X22

4

http://dx.doi.org/10.21939/4X22

MEI Encoding Conference, 2022

structures. Then we detail how the information is encoded.

2.1 Note and time alignment

Match files contain alignments at two levels: notes and time points (e.g., beat and measure).

For note-level alignments, the match file encodes a mapping match between the notes in
a performance and the corresponding one in a score. Formally, let us consider the sets P
and S of all notes in a symbolic performance and the corresponding musical score. match
is a partial function over P and S. For a performance that aligns perfectly with a score,
match becomes a total function, i.e., it is defined ∀e ∈ P . However, due to player mistakes,
embellishments, or incomplete scores, it may happen that some events in P do not have a
corresponding event in S. The partial function is non-surjective, as there aremultiple events
in the score (e.g., time signature annotations, barlines, etc.) that are not in the performance
and there is the possibility of omitted notes by the performer. Moreover, match can be non-
injective if there are repetitions, wheremultiple events in the performancemap to the same
element in the score.

The case of time alignments is different because both score and performance time are con-
tinuous domains and a function between them cannot be easily annotated bymusic experts.
Time level alignments can be seen as a set of samples from this function. Creators of the
match files are free to select the granularity level they want to encode, usually at the down-
beat or beat level.

2.2 Repetition structures

Handling repetitions for a performance and a corresponding score is a complex task due
to the arbitrary way they can be interpreted. For instance, a performer may play the entire
“unfolded” piece, while another may skip some repetitions. Other works, e.g., Foscarin et
al. (2020), create different score versions by manually removing the repetition marks that
are not played in the performance. However, this approach produces multiple scores of the
same piece, which complicates the comparison of the related performances.

By using match files, we do not modify musical scores; instead, we encode in the match
file an unfolded (or reduced) score that matches the aligned performance. This is paired
with an explicit representation of repetitions based on sections.4 A score is segmented in
multiple sections by repetition signs such as left repeat, right repeat, volta start, volta end,
and navigation directions such as al Coda, dal Segno, da Capo, etc. This simplifies the task
of comparing performances of the same piece with different repetition structures.

2.3 File encoding

A match file consists of a sequence of lines, each ending with a dot, and there are five
different types of lines. Figure 2 highlights examples with different colors. Global infor-
mation lines (in pink) encode elements that are constant throughout the entire piece, for
example, composer, performer, title, version, etc. The score property lines (in yellow) con-

4Sections in match files have a similar role to MEI <section> (and <ending>) elements; however, they
cannot be nested, and their usage is limited to repetition structures.

5

info(matchFileVersion, 1.0.0).
info(composer,Bach)
info(piece,Fugue 13 BWV858)
info(midiClockUnits,480).
info(midiClockRate,500000).
scoreprop(timeSignature,4/4,1,0.0).

scoreprop(keySignature,F# Maj,1,0.0).
snote(n0,[C,#],5,1:1,1/8,1/8,0.5,1.0,[])-note(0,73,1104,1647,43,0,0).

stime(1:2,0,1,beat)-ptime([1620]).
snote(n1,[F,#],5,1:2,0,1/8,1.0,1.5,[])-note(1,78,1620,2180,51,0,0).
snote(n2,[E,#],5,1:2,1/8,1/8,1.5,2.0,[])-note(2,77,2160,2727,56,0,0).
stime(1:3,0,2,beat)-ptime([2704]).
snote(n3,[F,#],5,1:3,0,1/8,2.0,2.5,[])-note(3,78,2704,3308,55,0,0).
snote(n4,[E,#],5,1:3,1/8,1/16,2.5,2.75,[])-note(4,77,5,3217,3464,56,0,0).
snote(n5,[D,#],5,1:3,3/16,1/16,2.75,3.0,[])-note(5,75,5,3472,3716,55,0,0).
stime(1:4,0,3,beat)-ptime(3716).
snote(n7,[C,#],5,1:4,0,3/16,3.0,3.75,[])-note(6,73,5,3716,3949,58,0,0).
insertion-note(7,75,3972,4084,58,0,0).

insertion-note(8,74,41024186,61,0,0).
insertion-note(9,75,4221,4335,54,0,0).
insertion-note(10,73,4341,4425,4425,63,0,0).
snote(n8,[B,n],4,1:4,3/16,1/32,3.75,3.875,[])-note(11,71,4456,4542,55,0,0).
snote(n9,[C,#],5,1:4,7/32,1/32,3.875,4.0,[])-deletion.

stime(2:1,0,4,downbeat)-ptime(4752)
snote(n17,[D,#],5,2:1,0,1/4,4.0,5.0,[])-note(13,75,4752,5808,55,0,0).
section(0.0,4.0,0.0,4.0,[])

sustain(17140,31,0,0).
sustain(17160,49,0,0).

Figure 2: An example of match file corresponding to the alignments of Figure 1. Examples
of different types of lines are color-coded for an easier understanding.

tain score elements that can change, such as key signatures, time signatures, and perfor-
mance directives. Alignment lines can have two formats, snote(*)-note(*) (in blue) and
stime(*)-ptime(*) (in grey), for note and time point alignments, respectively. Non-aligned
notes, i.e., notes only in the performance or only in the score, are encodedwith the keywords
insertion and deletion (in green). Furthermore, specific alignment lines are designated for
ornaments and trills, where multiple performed notes can refer to the same score notes or
even a score marking. Repetition section lines (in red) relate the unfolded score times to the
original score times, and sustain pedal lines (in orange) encode pedal information .

Table 1 contains value specifications for the note alignment line:

snote(Anchor,[NoteName,Mod],Octave,Measure:Beat, Offset,Dur,OnsetInBeats,OffsetInBeats,ScoreAttrList)-

note(ID,MIDIpitch,Onset,Offset,Velocity, MIDIchannel, MIDItrack).

The Anchor string corresponds to existing identifiers if there are any in the musical score
(e.g., MEI note ids) or generated ones. A suffix can be added in case of repetitions; for ex-
ample, a score note ”n23” in a repeated section, will be referred to as ”n23-1” the first time
and as ”n23-2” the second. The full specifications of the other line types are available at
https://cpjku.github.io/matchfile.

3 Practical applications

To support the usage of match files in practical applications, we present a way of parsing
and processing those files in Python and an updated and corrected match file dataset.

6

https://cpjku.github.io/matchfile

MEI Encoding Conference, 2022

Value name Value type Description

Anchor string Note identifier (suffix after “-” for repetition)
NoteName string Pitch class name in [C, D, E, F, G, A, B]
Modifier string Pitch modifier in [“”, n, b, #, bb, x]
Octave integer Octave number in scientific pitch notation
Measure integer Measure number (starting at 1, 0 for anacrusis)
Beat integer Integer beat number of note onset (starting at 1)
Offset fraction (int/int) Offset from beat position (fraction of whole note)

OnsetInBeats float Onset position in contiguous beats
DurationInBeats float Duration in beats

ScoreAttributesList string Note attributes (“grace”, “appoggiatura”, etc.)
ID integer Note identifier

MIDIpitch integer Pitch 0-127
Onset integer Time in MIDI ticks of the note on message
Offset integer Time in MIDI ticks of the note off message
Velocity integer Note on velocity 0-127
Channel integer MIDI channel 0-15
Track integer MIDI track

Table 1: Values specifications for the alignment line in a match file.

3.1 Handling Match files

Partitura (Cancino-Chacón et al., 2022; Grachten et al., 2019), an open-source Python pack-
age, offers off-the-shelf parsing and processing of match files. Partitura creates dedicated
Python objects that give easy access to the information encoded in the match file, as well as
lists of dictionaries relating performance and score note identifiers. If external scores are
required, Partitura can load MEI, MusicXML, and Humdrum **kern scores and link notes
and temporal positions by using the alignments in the match file. Partitura objects can be
easily converted to note array or pianoroll representations.

3.2 Dataset

The Vienna 4x22 was originally compiled by Goebl (1999) and consists of 4 excerpts of solo
piano pieces, each performed by 22 pianists. The pieces are 21 bars of Chopin Opus 10, 45
bars of Chopin Opus 38, 36 bars (the exposition) of Mozart KV331, and the full 32 bars of
Schubert D783 (opus 33 No. 15). All performances were recorded on Bösendorfer 290 SE
Grand Piano as MIDI-like data and subsequently each played note matched to its respective
score note. We release an updated and corrected version of this dataset encoded in the
current version of the match format at https://github.com/CPJKU/vienna4x22.

Conclusion and Future Work

In this paper, we proposed thematch format for a complete and robust encoding of the align-
ments between symbolically encoded musical scores and performances. Note-level align-

7

https://github.com/CPJKU/vienna4x22

ments and time-level alignments (e.g., beat and measure) are supported. Match files can be
used as a stand-alone representation of score and performance to reduce the technical dif-
ficulties of operating across multiple files. A Python package that can read and write match
files is available.5 We also release an updated and corrected version of the Vienna4x22
dataset that contains scores and performances aligned with match files.

The match file format is actively under development. This paper marks the release of the
stable version 1.0.0 but further modifications are to be expected to support more features
and solve problems that arise from its usage in practical applications. Other future works
involve a graphical utility for the visualization and modification of alignments and tools to
create them automatically (at least partially) given a corresponding score and performance.

Acknowledgements

This project receives funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement No 101019375
(Whither Music?).

References

Cancino-Chacón, C. E., Peter, S. D., Karystinaios, E., Foscarin, F., Grachten, M., & Widmer, G.
(2022). Partitura: A Python Package for Symbolic Music Processing. In Proceedings of
the Music Encoding Conference (MEC2022). Halifax, Canada.

Chen, C.-T., Jang, J.-S. R., & Liou, W. (2014). Improved score-performance alignment algo-
rithms on polyphonic music. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (p. 1365-1369). Florence, Italy.

Cook, N. (2007). Performance analysis and Chopin’s mazurkas. Musicae Scientiae, 11(2),
183–207.

Devaney, J., & Gauvin, H. L. (2019). Encoding music performance data in Humdrum and MEI.
International Journal on Digital Libraries, 20(1), 81–91.

Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., & Sakai, M. (2020). ASAP: a dataset of
aligned scores and performances for piano transcription. In International society for
music information retrieval conference (ISMIR) (pp. 534–541). Montréal, Canada.

Gingras, B., &McAdams, S. (2011). Improved Score-performanceMatching Using Both Struc-
tural and Temporal Information from MIDI Recordings. Journal of New Music Research,
40(1), 43–57.

Goebl, W. (1999). The Vienna 4x22 Piano Corpus. Retrieved from http://dx.doi.org/10
.21939/4X22 doi: 10.21939/4X22

Grachten, M., Cancino-Chacón, C. E., & Gadermaier, T. (2019). partitura: A python package
for handling symbolic musical data. In Late-Breaking Demo Session of the International
Society for Music Information Retrieval Conference. Delft, Netherlands.

Honing, H. (2001). From time to time: The representation of timing and tempo. Computer
Music Journal, 25(3), 50–61.

Marchini, M., Ramirez, R., Papiotis, P., & Maestre, E. (2014). The sense of ensemble: a
machine learning approach to expressive performance modelling in string quartets.

5https://partitura.readthedocs.io/

8

http://dx.doi.org/10.21939/4X22
http://dx.doi.org/10.21939/4X22
https://partitura.readthedocs.io/

MEI Encoding Conference, 2022

Journal of New Music Research, 43(3), 303-317.
Nakamura, E., Yoshii, K., & Katayose, H. (2017). Performance Error Detection and Post-

Processing for Fast and Accurate Symbolic Music Alignment. In Proceedings of the Inter-
national Society forMusic Information Retrieval Conference (ISMIR) (pp. 347–353). Suzhou,
China.

9

	Related work
	Match files
	Note and time alignment
	Repetition structures
	File encoding

	Practical applications
	Handling Match files
	Dataset

