
Simulating Human Tonal Expectation using Recurrent
Neural Networks

Carlos Cancino-Chacón1,2, Maarten Grachten2, and Kat Agres3

1Austrian Research Institute for Artificial Intelligence
2Johannes Kepler University of Linz

3Institute of High Performance Computing, A*STAR, Singapore

Technical Report; Version 0.01

Abstract

This document includes some of the technical details for reproducing the work
presented in

From Bach to the Beatles: The simulation of human tonal expectation
using ecologically-trained predictive models,

presented at the 18th International Society for Music Information Retrieval Con-
ference (ISMIR 2017) in Suzhou, China.

1 Data preprocessing
An audio signal can be represented using a Constant-Q Transform (CQT) [Brown, 1991],
which is a discrete frequency domain representation of audio.

The t-th slice of a CQT spectrogram is a non-negative vector xt ∈ R334 that rep-
resents frequencies between 27.5 and 16744.04 Hz with a resolution of 36 frequency
bins per octave. The audio in all recordings has a sample rate of 44.1 kHz. We
normalize each slice so that all of its components lie between 0 and 1 as

x̂t ←
tanh(xt)

tanh(max(xt) + ε)
, (1)

where max(xt) represents the value of the largest component of xt, tanh(·) is the
element-wise hyperbolic tangent function and ε is a machine epsilon for numerical
stability. In this work, we set ε = 10−10. Slightly abusing notation, in the following
we will assume that all CQT slices have been normalized, and therefore simply refer
to the normalized CQT slices x̂ as x.

2 Recurrent Neural Networks

2.1 Architectures
An RNN is a neural architecture that allows for modeling dynamical systems [Graves, 2013].
Let x1, . . . ,xt be a sequence of N -dimensional (normalized) input vectors and

1

y1, . . . ,yt be its corresponding sequence of outputs. An RNN provides a natu-
ral way to model xt+1, the next event in the sequence, by using the outputs of the
network to parametrize a predictive distribution given by

p(xt+1,i | xt, . . . ,x1) = yt,i (2)

where xt+1,i and yt,i are the i-th component of xt+1 and yt respectively.
The basic component of an RNN is the recurrent layer, whose activation at time

t depends on both the input at time t and its activation at time t−1. Although the-
oretically very powerful, in practice RNNs with vanilla recurrent layers are known
to have problems learning long term dependencies due to a number of problems,
including vanishing and exploding gradients [Pascanu et al., 2013]. Other recurrent
layers such as LSTM layers [Hochreiter and Schmidhuber, 1997] and gated recurrent
units (GRUs)[Chung et al., 2014] try to address some of these problems by intro-
ducing special structures within the layer, such as purpose-built memory cells and
gates to better store information. More recently, recurrent layers with multiplicative
integration (MI-RNNs) [Wu et al., 2016] have been shown to extend the expressiv-
ity of traditional additive RNNs by changing the way the information from different
sources is aggregated within the layer while introducing just a small number of extra
parameters.

The predictions of the network can be written as

yt = σ (Wyht(xt | θh) + by) , (3)

where ht ∈ RH is the output of the hidden layer at time t, θh are the parameters
of the layer, Wy ∈ R334×H is a matrix of weights connecting the recurrent layer to
the output by ∈ R334 is a bias vector and σ(·) is the element-wise sigmoid function.

A detailed description of the recurrent layers used in this paper can be found in
Appendix A.

2.2 Training

Given a set of T training sequences X = {{x(k)
1 , · · ·x(k)

Ti−1} | 1 ≤ k ≤ T}, where Tk is
the length of the k-th sequence, and their respective targets T = {{x(k)

2 , · · ·x(k)
Ti
} |

1 ≤ k ≤ T}, i.e. a shifted version of the input sequences, the parameters of the
network are learned by minimizing the mean cross entropy (MCE) [Bishop, 2006]

MCE = − 1

TN

T∑
k=1

1

Tk

Tk∑
t=1

N∑
i=1

CEkti, (4)

where CEkti is the cross entropy of the i-th feature at time-step t for the k-th
sequence given by

CEkti = tkti log(pkti) + (1− tkti) log(1− pkti), (5)

and pkti = p(x
(k)
t,i | x

(k)
t−1, . . . ,x

(k)
1) and tkti = x

(k)
t,i .

2.2.1 Biasing learning towards predicting change

A crucial question when applying discrete time recurrent models to a continuous
stream of data such as audio is how to choose the rate of discrete time steps with

2

respect to the absolute time of the data. This choice depends on the approximate
rate or temporal density of relevant events in the data—in our case the notes that
make up the musical material. Ideally, we would like the discrete time steps to be
small enough to capture the occurrence of even the shortest notes individually, but if
the discrete time step is chosen much smaller than the median event rate, this leads
to strong correlations between data at consecutive time steps. A result of this is
that training models to predict the data at time-step t+ 1 teaches them to strongly
expect the data at t+1 to be approximately equal to the data at t. Choosing a larger
discrete step size for the model alleviates this problem, but has the disadvantage
that the data the model sees at a particular time may actually be an average over
consecutive events that happened within that larger step.

We slightly revise the training objective of the models as a remedy to this un-
fortunate trade-off. This revised objective biases the models to care more about
correctly predicting the data at t+ 1 when the change from t to t+ 1 is large (e.g.
the start of a new note) than when it is small (e.g a transition without any starting
or ending note events). This allows us to use a relatively small step size without
causing the models to trivially learn to expect the data to stay constant between
consecutive time steps.

More specifically, we modify the original cross-entropy objective CEkti by mul-
tiplying it with a time-varying weight wkt as follows:

C̃Ekti ← wktCEkti, (6)

where wkt is given by

wkt =

{
1 if

∑N
i |x

(k)
t+1,i − x

(k)
t,i | > ε

β otherwise
(7)

where ε ∈ R acts as a threshold distinguishing small and large change transitions,
and β ∈ R controls the relative influence of prediction errors on the training in
the case of small change transitions1.Based on an informal inspection of the model
predictions in a grid search on β and ε, we choose β = 10−3, and ε such that

Ptraining(

N∑
i

|xt+1,i − xt,i| ≤ ε) = 0.505 (8)

where Ptraining(X) denotes the empirical probability of event X under the train-
ing data.

2.3 Hyperparameters
The models are trained using RMSProp [Tieleman and Hinton, 2012], a variant of
stochastic gradient descent that adaptively updates the step-size using a moving
average of the magnitude of the gradients. The initial learning rate is set to 10−3.
The gradients are computed using truncated back propagation through time, where
computation of the gradients is truncated after 100 steps and are clipped at 1. Each
training batch consists of 20 sequences of 100 CQT slices. Each sequence is selected
randomly out of the training data. Thus, an epoch of training corresponds to the

1We empirically found a binary distinction between small and large change transitions to be more
effective than a gradual weighting scheme

3

model seeing roughly the same number of time steps as in the whole fold. Early
stopping is used after 100 epochs without any improvement in the test set.

3 Probe-tone experiments
Let X = {x1, · · ·xT } be an input musical stimulus, also referred to as context, and
T = {τ 1, . . . , τ 12} the set of probe-tones each corresponding to one of the 12 pitch
classes. In order to quantitatively assess how well a probe-tone τ fits the musical
stimulus, we compare y∗, the next prediction of the RNN given the input stimulus
X, and the probe-tone using the Kullback-Leibler (KL) divergence, given by

DKL(τ ||y∗) =

N∑
i=1

τi log

(
τi
yi

)
, (9)

where τi and yi are the i-th components of τ and y∗ respectively. In this case, we
can see that the KL divergence is small when the expectations of the model are
similar to the probe-tones.

We can construct the probe-tone profile for a stimulus in key key, denoted
byPmodel

key ∈ R12, as

Pmodel
key = minmax

 −DKL(τ 1||y∗
key)

...
−DKL(τ 12||y∗

key).

 , (10)

where minmax(·) is a normalization function given by

minmax(x) =
x−min(x)1

max(x)−min(x)
, (11)

where min(x) and max(x) are the minimal and maximal components of the input x
and 1 ∈ R12 is a vector of ones.

The average profile for a stimulus is computed as

Pmodel =
1

12

∑
key

Pmodel
key . (12)

We also normalize the human profiles reported by Krumhansl and Kessler by
using the minmax function. We use Pearson’s correlation coefficient to compare the
profiles of the model to those of humans

r =

∑12
i=1(Pmodel

i − P̄model)(Phuman
i − P̄human

i)√∑12
i=1(Pmodel

i − P̄model)2
√∑12

i=1(Phuman
i − P̄human)2

, (13)

where Pi re presents the i-th component of a profile P , and P̄ = 1
12

∑
i Pi.

References
[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.

Springer Verlag, Microsoft Research Ltd.

4

[Brown, 1991] Brown, J. C. (1991). Calculation of a constant Q spectral transform.
The Journal of the Acoustical Society of America, 89(1):425–434.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555.

[Graves, 2013] Graves, A. (2013). Generating Sequences With Recurrent Neural
Networks. arXiv, 1308:850.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long Short-Term Memory. Neural Computation, 9(8):1735–1780.

[Pascanu et al., 2013] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
difficulty of training recurrent neural networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning, pages 1–9, Atlanta, Georgia, USA.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-
rmsprop: Divide the gradient by a running average of its recent magnitude. In
COURSERA Neural Networks for Machine Learning.

[Wu et al., 2016] Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., and Salakhutdinov, R.
(2016). On Multiplicative Integration with Recurrent Neural Networks. In 30th
Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain.

5

A Recurrent layers

A.1 LSTM with Multiplicative Integration
Let xt ∈ RN be an input vector representing the CQT at time t. The activation of
the MI-LSTM layer is given by

zt = tanh(βz,1 �Uzht−1 + βz,2 �Wzxt +αz �Wzxt �Uzht−1 + bz) (14)

it = σ(βi,1 �Uiht−1 + βi,2 �Wixt +αi �Wixt �Uiht−1 + bi) (15)

f t = σ(βf,1 �Ufht−1 + βf,2 �Wfxt +αf �Wfxt �Ufht−1 + bf) (16)

ot = σ(βo,1 �Uoht−1 + βo,2 �Woxt +αo �Woxt �Uoht−1 + bo) (17)

ct = it � zt + f t � ct−1 (18)
ht = ot � tanh(ct), (19)

where zt,ht ∈ RNh are the block input and output (i.e. the activation of the MI-
LSTM layer), respectively, ct ∈ RNh is the cell state and it,f t,ot ∈ RNh are the
input, forget and output gates, respectively. The parameters of an MI-LSTM layer
are {Wk | k ∈ {z, i, f, o}}, input-to-hidden weight matrices in RNh×N , {Uk | k ∈
{z, i, f, o}}, hidden-to-hidden weight matrices in RNh×Nh , {bk | k ∈ {z, i, f, o}},
bias vectors in RNh and {αk,βk,1,βk,2 | k ∈ {z, i, f, o}}, gating bias vectors for
multiplicative integration in RNh . σ(·) and tanh(·) are the elementwise sigmoid and
hyperbolic tangent functions, respectively.

6

